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We study a reaction model that presents stochastic resonance purely due to internal noise. This means that
the only source of fluctuations comes from the discrete character of the reactants, and no more noises enter into
the system. Our analysis reveals that the phenomenon is highly complex, and that is generated by the interplay
of different stochasticity at the three fixed points of a bistable system.
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Stochastic resonance is a phenomenon that has been ex-
tensively studied in the literature, both for its inherent
interest, as well as for its broad range of applications �1�.
Since the seminal works on this subject appeared �2�,
much theoretical work has been done in order to extend
the variety of situations in which similar phenomena arise.
Very interesting examples, such as stochastic coherence
�3�, the effect of colored noise �4�, multiplicative noise �5�,
and noise-mediated localization �6� have already been
found and analyzed. A different and very relevant question
is how to get some type of stochastic resonance purely due
to internal fluctuations. One answer was given in the
form of system size resonance �7�, obtained when the
optimal output of a system is achieved for a certain finite
number of constituent subsystems. Stochastic optimization
also appears by tuning a continuous parameter: Numerical
studies have shown that chemical reactions can undergo
stochastic coherence due to internal noise, both in
autonomous �8� and nonautonomous situations �9�. But,
however, it is remarkable that seemingly little attention has
been paid on the internal noise amplification of an external
signal in chemical kinetics mimicking the classical situation
in stochastic resonance, apart from the seminal work by
Dykman et al. �10�. The main goal of this work is to study
this phenomenon by means of analytical tools, and without
relying on the assumption of Gaussian noise, which
allows us to study the problem even if one state is almost
empty.

Reaction kinetics is a prototypical problem where the
effect of the fluctuations can be quantified �11�. Internal
fluctuations in these systems appear due to the discrete
character of the reactants, and a mean-field description al-
ways omits some of their features. We will show that sto-
chastic resonance is one of them. For our purposes we
will consider the following series of reactions: 0”→X,
at rate K1, X→0” , at rate K2, 2X→3X, at rate K3, and
3X→2X, at rate K4. We can interpret this problem as a
population dynamics model: The first reaction represents
emigration into the system, the second, death, the third re-
production, and the last, competition for limited resources of
nutrient. A similar problem but without the three-body
reaction �the competition reaction� was studied in Ref. �12�,
and we will show here that including this new reaction
opens the possibility of stochastic resonance. This system
can be modeled by means of a combinatorial master equation
�11�

�P�n,t�/�t = K1�P�n − 1,t� − P�n,t�� + K2��n + 1�P�n + 1,t�

− nP�n,t�� + �K3/2���n − 1��n − 2�P�n − 1,t�

− n�n − 1�P�n,t�� + �K4/6���n + 1�n�n − 1�

�P�n + 1� − n�n − 1��n − 2�P�n,t�� . �1�

To study this master equation we will employ the techniques
developed by Elgart and Kamenev �12�. Consider the gener-
ating function

G�p,t� = �
n=0

�

pnP�n,t� . �2�

This function obeys the imaginary time Schrödinger equation

�tG=−ĤG, where the Hamiltonian is given by

Ĥ�p̂, q̂� = K1�1 − p̂� + K2�p̂ − 1�q̂ + �K3/2��1 − p̂�p̂2q̂2

+ �K4/6��p̂ − 1�p̂2q̂3. �3�

The effect of the momentum and coordinate operators is
p̂G�p , t�= pG�p , t� and q̂G�p , t�=−�pG�p , t�. The detailed
procedure is described in Ref. �12�, but it is worth pointing
out that similar techniques were previously introduced in the
literature �13�. We can now write the classical equation of
motion, which is given by

q̇ � �dq/dt� =� − ��H/�p��p=1 = K1 − K2q + �K3/2�q2

− �K4/6�q3, �4�

in which the coordinate q plays the role of mean-field den-
sity. In order to understand the phenomenon of stochastic
resonance in a chemical system we need some kind of bista-
bility. For this, we make the next assumptions on the rate
constants: K1=�Ln3, K2=n2��+L+�L�, K3=2n�1+�+L�, and
K4=6, where 0���1, n�0, and L�1. This way Eq. �4�
has three fixed points: q−=�n, q0=n, and q+=Ln; q− and q+
are stable and q0 is unstable. These new parameters � and L
are auxiliary mathematical variables that are introduced in
order to simplify the notation; they have, in contrast, no di-
rect physical meaning but the one given through their rela-
tion with the rate constants. The variable n is a measure of
the size of the system, and will be the tuning parameter that
will allow us to find the resonance, because we can modify
its value without changing the relative distance between the
fixed points. On the other hand, the assumption of bistability
is quite natural in population dynamical systems, as for in-
stance in those modeling epidemics �14�.

The deterministic equation predicts an evolution to one of
the stable fixed points, q− for initial conditions q�0��q0, and
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q+ if q�0��q0. In the stochastic case, both states become
metastable, and the system will jump from one to the other
indefinitely. In this case the system does not experience the
same noise strength in the neighborhood of the fixed points,
since the noise has not been imposed externally in an ad hoc
manner. To estimate the frequency of jump we will employ
the instanton technique for reaction kinetics, developed in
the paper by Elgart and Kamenev �12�. Let us briefly explain
why we do think that this method is the most appropriate for
the present case. It is known that this type of theory, such as
the one given by the Hamiltonian �3�, can be mapped onto a
stochastic differential equation �15�; one could be suggested
to derive the stochastic equation and then apply standard
techniques �1�. However, the presence of cubic powers of the
momentum in the Hamiltonian denote the presence of non-
Gaussian noise, and its exact correspondence with Langevin
equations is still unknown �16�.

The action corresponding to the Hamiltonian �3� is

S�p,q� = Et − �
0

t

qṗdt − q�0��p�0� − 1� , �5�

where we have used the fact that E=H�p ,q� is an integral of

motion, i.e., Ė=0. To simplify our calculations we will per-
form the change of variables q= q̃n and t= t̃ /n2, so the action
becomes

S�p, q̃� = nH̃�p, q̃�t̃ − n�
0

t̃

q̃ṗdt̃ − nq̃�0��p�0� − 1� , �6�

where H̃ denotes the Hamiltonian with the new rate con-
stants, and the fixed points now have the values q̃−=�, q̃+
=L, and q̃0=1. The tildes will be suppressed from now on.

In the long time limit, t→�, the system approaches the
trajectories of zero energy, H�p ,q�=0. The decay time from
one state to the other is estimated as �=� exp�S0�, where � is
the relaxation time to the arrival state and S0 is the action
along the non-mean-field line �12�. Let us briefly comment
on this point. The equation H�p ,q�=0 has two solutions: p
=1, the mean-field line, and the non-mean-field, or instanton,
line; both are depicted in Fig. 1 for �=1/2, n=1, and L=3.
One can see that if we only consider the mean-field line, then
q− and q+ are stable and q0 is unstable. But if we consider the
whole phase space, then we realize that the three points are
actually saddles. The time it takes to go from one point to the
other is proportional to the exponential of the action along
the line, which is identically zero for mean-field lines. Since
we are performing a semiclassical calculation, it is valid only
for calculating transition times along non-mean-field lines if
S0�1. We will estimate the transition time from q− to q+
�and vice versa� as the time it takes to move along the non-
mean-field line, since this time is much longer than the time
it takes to perform the mean-field part of the trajectory.

In transitions from q− to q0 the action is S0=n�q−−q0�
+n	q−

q0pdq, where p can be obtained from the relation
H�p ,q�=0,

p = 
��� + L + �L�q − �L�/��1 + � + L − q�q2��1/2. �7�

Although this integral can be computed straightforwardly,
the resulting expression is cumbersome, and would not help

us to understand the phenomenon. So we will study the sim-
pler case �→0,

lim
�→0

S0 = n�q− − q0� + 2n�L arccsc��1 + L�

= 2n�L arccsc��1 + L� − n . �8�

The reader might wonder how the system can leave the
empty state since there is no emigration. This is true, because
in an empty system there are no fluctuations, and once there,
we will stay in it forever. However, the empty state might be
metastable �it is very easy to find a set of reactions that rends
the empty state unstable�, and a perturbation could lead us
out of it. So in this case � should be considered very small
��	1�, but not identically zero. Now another advantage of
the Elgart-Kamenev approach appears clear: it allows us to
estimate the effect of internal fluctuations in a state with
almost no population, contrary to perturbative approaches
�11�. A simpler expression can be obtained by taking the
limit L→�: S0=n�q−−q0�+2n=n. Note that in this case the
action reduces to the distance between the fixed points, sug-
gesting that this distance is the key parameter that rules the
transitions between the metastable states. We will see, how-
ever, that the dynamics is not as simple as this.

We can also compute the action along the non-mean-field
line from q+ to q0,

S0 = n�q+ − q0� + n�
q+

q0

pdq → n�L − 1�

+ 2n�L�arctan��L� − arccot��L��, � → 0. �9�

In the limit L→� the second term in the right-hand side
�L, so it is irrelevant compared to the first term, which is
the difference between q0 and q+. This leads us to the same
conclusion as in the last paragraph.

Now, if we want to spend the same time in both trips q−
→q0 and q+→q0, we need to identify expressions �8� and
�9�, so we are led to solve the transcendental equation

FIG. 1. Phase space for �=1/2, n=1, and L=3. The mean-field
line is shown as a dashed line and the non-mean-field line is repre-
sented as a solid line. The fixed points are encircled and the arrows
show the direction of motion along the different lines. Note that if
we only consider the mean-field line, then q=1/2 and q=3 are
stable and q=1 is unstable. However, taking into account the whole
phase space, the three fixed points become saddles.
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�L /2+arccot��L�=arccsc��L+1�+arctan��L�. This equation
can be solved numerically to get L*�5.43. At this point one
is tempted to use the simplified expressions obtained in the
limit L→� in order to get a closed expression for L*. How-
ever, equaling the most relevant terms in this limit, one ar-
rives at the contradiction L*=1. This means that we have to
take into account that the three points are at a finite distance
from each other, because the transition times depend on the
relative position of the three fixed points altogether. Note
that assuming the equality of both decay times is not essen-
tial for the system to undergo resonant behavior, but it sim-
plifies the forthcoming calculations.

We finally have our bistable system �q− ,q0 ,q+�
= �0,1 ,L*�. This system is extremely asymmetric, not only
because the distance between the fixed points is not the
same, but more importantly because the “potential energy” at
these points is very different. We have defined the potential
energy as the integral of the force V�q�=−	F�q�dq, where
the force is given by F�q�= �−�qH�p ,q��p=1. We have de-
picted the potential in Fig. 2, where one can see the huge
difference of depth between the two wells. From this figure
one realizes that the fluctuations are much stronger in the
case of a higher population, and so, they have to be stopped
by a higher energy barrier. The fluctuations are so weak in
the case of a low population, that we have to make it easier
for them to cross the barrier. The effect of a nonvanishing
third moment in the noise term has been previously exam-
ined in the case of a deterministic chaotic “noise” �17�. But
in this case the weakness of the asymmetry allowed it to be
treated as a perturbation.

The relaxation time to q0 is given by �= �L*−1�−1, so we
have all the ingredients to calculate the decay time �, and we
can now examine if our system will be resonant to the exter-
nal signal f�t�=A cos�
t+��. Here � is an arbitrary phase
and A is the amplitude of the signal. In our population dy-
namics model it is introduced as a periodic modulation of the
competition K4→K4+A cos�
t+��, and we will assume that
the amplitude A of this signal is very small so we can con-

sider it as a perturbation. This perturbation implies an addi-
tional time-dependent term in the Hamiltonian Hp
=n3A cos�
n−2t+���p−1�p2q3, in nondimensional variables.
The corresponding action reads

Sp = nA cos�
n−2t0��
0

t

cos�
n−2t��p − 1�p2q3dt

− nA sin�
n−2t0��
0

t

sin�
n−2t��p − 1�p2q3dt , �10�

where we have expressed the phase as a function of the sig-
nal initial condition �=
n−2t0. Now, after assuming a qua-
sistationary variation of the external signal �adiabatic ap-
proximation�, we can reduce the action to

Sp = nA cos�
n−2t��
0

t

�p − 1�p2q3dt , �11�

where we have modified the notation t0→ t. To compute ac-
tion �11�, we need to solve the classical equations of motion,
q̇=−�pH and ṗ=�qH, in the instanton line �7�; for the first
equation we get 2dt= �L*q−�L*q3�1+L*−q��−1dq. Plugging
this last expression together with Eq. �7� �note that now �
=0 and L=L*� into Eq. �11� we obtain, for transitions from
q=0 to q=1,

Sp = nA cos�
n−2t��
0

1 �L*q

2�1 + L* − q�3/2dq

= nA cos�
n−2t��1 − �L* arccsc��L* + 1��

= nA1 cos�
n−2t� , �12�

and for transitions from q=L* to q=1,

Sp = nA cos�
n−2t��
L*

1 �L*q

2�1 + L* − q�3/2dq

= nA cos�
n−2t�
1 − L* + �L*�arctan��L*� − arccot��L*���

= − nA2 cos�
n−2t� , �13�

where the effective amplitudes A1 and A2 were defined in
order to preserve their positivity. The ratio between both ac-
tions �Sp�L*→1� /Sp�0→1���48 shows that the effective
amplitude of the external signal is very different at the two
stable fixed points, being much stronger in q=L* than in q
=0. It seems that this mechanism is reminiscent of that of
noise amplification, which is responsible, in turn, for the
asymmetry of the potential in Fig. 2. We can finally write the
time-dependent escape rates,

�1�0 → 1� = exp�S0 + Sp�0 → 1�� � ��1 + nA1 cos�
n−2t�� ,

�14a�
�2�L* → 1� = exp�S0 + Sp�L* → 1�� � ��1 − nA2 cos�
n−2t�� .

�14b�

Now we can treat our problem as a two-state system gov-

erned by the master equation Ṗ±�t�=−W��t�P±�t�
+W±�t�P��t�, where P+ �P−� denotes the probability that the
system occupies the state q=L*�q=0� at time t, and W+,−

denote the transition probability densities, given by

FIG. 2. Potential energy in the system with �=0, n=1, and L
=L* as explained in the text. The minima are displayed at q=0 and
q=L*, and the maximum is located at q=1. One can see the huge
difference in depth between the two wells. The inset shows a closer
look to the minimum located at q=0, to provide a better idea of
what the energy barrier is in this case.
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W− = W�L* → 1� = �−1/�1 − nA2 cos�
n−2t��

� r�1 + nA2 cos�
n−2t�� , �15a�
W+ = W�0 → 1� = �−1/�1 + nA1 cos�
n−2t��

� r�1 − nA1 cos�
n−2t�� , �15b�

where r=�−1. From now on, our derivation of the stochastic
resonant behavior will be parallel to that of Ref. �1�, so we
will not do the calculations in detail, and we refer the inter-
ested reader to this reference. We can use the normalization
condition P++ P−=1 together with the transition probability
densities Eqs. �15a� and �15b� to solve the two-state master
equation to first order in A. This solution can be used to
obtain the system response �q�t� �q�t0� , t0�
=	xP�x , t �x0 , t0�dx, where P�x , t �x0 , t0�= P+�t��x−L*�
+ P−�t��x�. In the asymptotic limit we find

lim
t0→−�

�q�t��q�t0�,t0� = L*/2 − �L*/2��A1 + A2�n3r/�4r2n4 + 
2

�cos�
n−2t − arctan�
/�2rn2��� , �16�

and we can appreciate that the amplitude of the periodic part
of the system response undergoes a resonance for a finite
value of n. To see this more clearly consider the n-dependent
part of the amplitude of the system response

An =
n3r

�4r2n4 + 
2
=

n3�L* − 1�exp�− nR�
�4�L* − 1�2 exp�− 2nR�n4 + 
2

, �17�

where R=S0 /n is a constant independent of n. This function
attains its maximum at the value of n solving the transcen-
dental equation 4�L*−1�2n4=exp�2nR��nR−3�
2. In order to
get a more graphical idea of the phenomenon we have de-
picted An versus n in Fig. 3 for three values of the frequency

=10−3 ,10−4 ,10−5. In this figure one can see how the reso-
nance becomes stronger and appears for higher values of n as
the forcing frequency decreases.

Let us now point out three final and very important re-
marks. The first is that the resonance is present only if the
external signal is introduced modulating K4, K3, or K2. A
simple analysis reveals that modulating K1 ,K2 ,K3 shifts the
cubic dependence in n in An to n0 ,n1 ,n2, respectively, so the
possibility of resonance is lost �at least, if we do not intro-
duce n-dependence in the external signal� for K1. Also, this is
not the unique example of stochastic resonance that might
appear in a chemical system: different parameter values and
reaction sets will provide new examples of this phenomenon.

The assumptions made in this work were introduced to fa-
cilitate the analytical assessment of the problem. Finally, the
improvement in the resonance observed in Fig. 3 for decreas-
ing frequencies is not unbounded; if we assume too large
values of n then we could not consider the action �11� as a
perturbation, and so the linear response theory would no
longer be valid.

In summary, we have shown that it is possible to find
stochastic resonance in reaction kinetics purely due to the
presence of intrinsic noise generated by the discrete character
of the reactants. We have presented our model as a popula-
tion dynamics problem, a type of system that is usually sub-
ject to external periodic forces, such as seasonal variation. A
possible resonant coupling between phenotype selection in a
biological species and periodic environmental evolution has
been suggested recently �18�, so it would be very interesting
to know if not only the phenotype but also the population
itself can undergo some sort of stochastic resonance, in par-
ticular the one reported here. This could have a serious im-
pact on the possibility of extinction of a population, since, as
we have seen, internal fluctuations can drive a system from a
state with a large population to an empty state.
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FIG. 3. Nonmonotonic behavior of An as a function of n for
three different values of the forcing frequency: 
=10−3 �solid line�,

=10−4 �dashed line�, and 
=10−5 �dotted line�. We can see how
the resonance appears for higher values of n and becomes stronger
as the forcing frequency decreases.
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